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Abstract. Using Kaluza-Klein-like dimensional redunion lechniques we obtain a classical 
suing with a pure SU(2)  charge. The string is embedded in the product of Minkowski space 
and the squashed 3-sphere, which has SU(2)  as its isomehy gaup .  For d n  values of the 
constant9 of motion the swing can wind around the sphere without contracling to a poinL in 
wnkast to what is expected fmm the mpology. This wnswction finally leads to a non-collapsing 
circular s ~ n g  in Minkowski space. 

1. Introduction 

The possible generation of cosmic strings and other topological defects is intimately 
connected with the phenomenon of spontaneous symmetry breaking [l,  21. The simplest kind 
of such a string is a flux tube [3] immersed in a superconducting background. This kind of 
string may be detected by its gravitational field, which corresponds to a conic singularity in 
space 141. It has been suggested [5] that superconducting strings in a symmetric background 
may also exist. This kind of string may also interact with extemal electromagnetic field+ 
thus producing spectacular effects [6]. Strings which interact with non-Abelian gauge fields 
have also been suggested [7] and their properties in some simple cases have beeen discussed 
in [8-10]. 

The method of dealing with a non-Abelian string is via the Kaluza-Klein approach [7], 
namely letting it evolve in a spacetime which locally looks like a direct product of 
Minkowski space with a compact manifold X with dimension M. We write the higher- 
dimensional line-element as 

(1) 
where Greek indices range from 0 to 3, lower case latin indices range from 1 ton and capital 
latin indices from 0 to 3 + n. A; is a product of the algebra-valued vector fields with the 
Killing vectors. The string motion which is described by the 4cn functions x M ( r ,  U) is 
determined by the Nambu-Goto action 

ds2 = GMNdrMdrN = . ~ l , ~ d r w ~ ”  + gij (&(dri  + A;&”)(& + A!&”) 

where GAB is the induced metric on the world-sheet. The indices A ,  6 range from 0 to 1. 
The non-Abelian properties of the string stem from the choice of the internal manifold 

X. X = SN-’ yields strings with S O ( N )  charges I8.91 while the choice X = C P N - ’  leads 
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to SU(N) /&  symmetry [IO]. The most interesting aspect of these systems is the existence 
of stable circular solutions due to the self-interaction of the strings and the possibility of 
non-trivial winding of the string around the intemal manifold. It is therefore interesting 
to extend the analysis to strings with SU(N) charges. The difficulty, which explains why 
this possibility has not so far been investigated, is in finding the appropriate manifold (and 
metric tensor) which has SU(N) as its isometry group. A quite simple solution to this 
question is found in the case N = 2 by turning one's attention to the group manifold. 
Generally the group manifold of SU(N) has a symmetry of S U ( N )  x SU(N).  It tums 
out, however, that the group manifold of S U ( 2 )  admits a 'squashed' metric which breaks 
explicitly one S U ( 2 )  and leaves us with just the desired SU(2) as a symmetry group. 

In this paper we therefore take this path and investigate the dynamical properties of 
the SU(2) string. After an overview of the squashed SU(2) manifold, given in section 2, 
an approach for the construction of the effective potential for closed strings is described 
in section 3. In section 4 this approach is applied to the squashed S U ( 2 )  string and its 
essential properties are discussed. Our conclusions are summarized in section 5. 

2. The squashed SU(2) 

A Lie group G may be endowed with a natural metric tensor known as the CarIan-Killing 
metn'c. It is given by 

where Lj and Rj are the left-invariant and right-invariant Maurer-Cartan I-forms 

Here a, U are the derivatives of the group elements with respect to its parameters xi which 
we think of as coordinates. Since the Maurer-Cartan forms Lj ( R j )  are invariant with 
respect to left (right) multiplication of U by a constant group element, the metric tensor 
(3) has G x G as its isometry group. The left-invariant 1-forms may be decomposed into 
a combination of the (Hermitian) generators of G which we may call hi 

(5) 
(and similarly for R).  Thus we obtain M = dim(G) left-invariant differential I-forms I'. 
Following Duff er a1 [I I]. we can use them to construct a'squashed' line-element which is 
only left-invariant, thus having only G as its isometry group. The simplest way of doing 
that is by introducing M arb i t rq  positive numbers pi .  and constructing the line-element 
by simple combinations of (1')2 

ds2 = p$')Z. (6) 
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g. 11 - - - 2 t ~ ( L i L j )  = -2 tr (RjRj)  (3) 

Li = u-'aiu Ri = UaiU-'.  (4) 

L = L i b '  = liA' 

It is evident that for a general set of pi's the right G-invariance is  explicitly broken. 
The simplest case which we now discuss is the SU(2) group manifold. First we 

parametrize SU(2)  by Euler angles 

with 0 < 8 < K, 0 < @ < 2rr, 0 < @ < 4 ~ .  Then we compute the left-invariant I-forms 
using (5) and find that 

U =exp($~uz)exp($i8u,)exp($@uz) (7) 

I '=-s in@dB+cosrl ,s in8w 

1' = cos @ d8 +sin @ s i n e w  (8) 

I 3  = d@ f cos0 dq5, 
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The line element is given by (6) 

d.2 = pf(l')2 + p;Q*)2 + &3)2 

=p:(sin+dB -co~$sinOd@)~ +p:(cos+dB +sin+sinBd@)2 

+ p:(d+ + cosOW2 (9) 

and for non-equal ( P I ,  &, m )  it is invariant only under left SU(2) generated by the following 
Killing vectors: 

a a COS+ a 
ae a+ S U I ~  a+ K"' =sin+- +cotecos+- - -- 
a a sin4 8 
ae a+ sine a+ ~ ( ~ ) = c o s 4 - - c o t O s i n ~ - + - -  

A more 'symmetric' parametrization of SU(2) that will also be convenient for our 
purposes is obtained by the redefinitions 

e 
p = sin - 2 + = + I + &  + = & - + I  

In this case the group element (7) has the explicit form 

where 0 4 
section 4 we will use both paramebizations (7) and (12) simultaneously. 

& 6 2n, 0 6 p 6 1, and both +I and & are periodic with period 2 ~ .  In 

3. General analysis 

In this section we consider a circular string embedded in the product space M4 x X, where 
X is a compact M-dimensional manifold, not necessarily a group manifold. The idea is to 
write the equations of motion for the string in a Hamiltonian form, which is suitable for 
further investigation when the exact solution cannot be found analytically. The results of 
this section wilt be a slight generalization of section 2 of [12]. 

The line element is given by 

d.? = -dt2 + dr2 + rZdeZ + dz2 + gjjdr'dxj (13) 

with (i. j) = (1,2,. . . , n) and the string is, as usual, described by the Nambu-Goto action: 

where GAB is the induced metric on the world-sheet. In a given coordinate system we can 
write x i  = (x",  x f l )  where CY = 1,2,3, .  . . , k 6 M and p = (k + l ) ,  . . . , M and 



7482 

i.e. we assume that there are n - k cyclic coordinates in the intemal space. The ansatz 
describing a circular string in Minkowski space is taken to be 

Y Verbin and A L Lorsen 

i = T  r = r ( T )  Z = O  e = U  xu = x * ( T )  a x P / a o  = n p  (16) 

where n@ are constants ('winding numbers'). It is now straightforward to derive the 
equations of motion for the dynamical variables (cf [12]) 

where m, L, c1 and 51, are integration constants, and 51, the constant 'charges'. Finally the 
xu's are determined by 
ha& + a,h,&iY - ~ a , h y 8 i 5 X y  + ~da,[g,,(nW' + ~2~S2" ) l  

- W i Y [ a . ( a p g , y )  - aY(npgpe)i  = 0. (19) 
Here 51, = gW2, and h,# = gep - g~vgvgg,,u. It is easy to show that the latter can be 
derived as Hamilton equations from the Hamiltonian 

(20) 

where A," (g,./2)[n*nv + Qfi51"] and c: is the constant 'energy'. Finally 
the various integration constants are constrained by c: + cz = l/w2 and L = n W , .  Note 
that the terms mixing cyclic and non-cyclic coordinates in the line element show up in the 
Hamiltonian as a pvector of Abelian potentials. This is of course not at all surprising as 
can be seen as follows. First write the metric (14) in the equivalent way 

H(x", p a )  = (1/2O2)h"'(pe - wQ,Ag)(pp - oS2.A;) + Ver(xa) c2/2 2 

gw"g,,, Vef 

Then observe that, since A;, grV and h.B depend on xu only, this is exactly the metric used 
in the 'ordinary dimensional reduction' scheme of Schwan and Scherk [I31 leading to an 
[U(l)r-' invariance. It should however be stressed that in our case aU this takes place in 
the intemal space so from the four-dimensional point of view A: has absolutely nothing to 
do with an electromagnetic potential. Our consmction can therefore be characterized as an 
'ordinary dimensional reduction' taking place inside a 'generalized dimensional reduction' 
or just as 'Kaluza-Klein in Kaluza-Klein'. 

In section 4 we will use this general formalism to analyse a string with an intemal 
SU(Z)-charge. 

4. Analysis of the minima 

For a circular string embedded in the product of Minkowski space and the squashed 3- 
sphere (squashed SU(2))  we make the following ansatz in the intemal space, using the 
parametrization (I I), (12): 

P = P ( T )  41 = + nU qh = E A T )  + nU (22) 
where n is the winding number. Note that we need the same winding number in the two 
'angular' coordinates since only the combination 4 = 41 + qh is cyclic; different winding 
numbers will lead to explicit o-dependence of the equations of motion which will then 
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correspond to another family of solutions. We will however only consider solutions of 
the general form described in section 3. For simplicity we will furthermore only consider 
different ‘squashing-paramet’ in the form (p2 scaled to 1) 

(PI,m,P3)=(h,1,p) P’>h’>1. (23) 

Other possibilities will eventually lead to similar conclusions. 
For p = 1 and p = 0 the line element (9) degenerates into ds’ = 4p2d& and 

ds2 = 4/.t2d& respectively, which in both cases means that the string is collapsed in 
one of the angular coordinates. In that case the winding number in (21) is ill-defined so it 
is important that the string is kept away from these ‘poles’. Obviously the topology itself 
does not prevent the string from collapsing since squashing the 3-sphere does not change 
the topology (trivial fundamental group), but it will turn out that it is actually possible to 
construct solutions where the dynamics of the string prevents it from collapsing, as we will 
see in a moment. 

To use the general formalism of section 3 on the squashed sphere of section 2 we make 
the identifications 

x ‘  = (p.  Jr,  4) x“ = ( p ,  J r )  x p  = @ nj’ = 2n (24) 

i.e. c$ is the cyclic coordinate and ( p ,  $) are the non-cyclic. The various elements 
(g,,, g,o. gp) of the metric of the squashed 3-sphere can then be read off from the line 
element (9) of section 2. Furthennore we also obtain the equations of motion directly. The 
string radius in Minkowski space is as always determined by equation (17) with L = 2nQ. 
and the cyclic coordinate B = B I  + BZ fulfils equation (18) 

This equation can of course only be solved provided that we know p and *, which are 
finally determined by a Hamiltonian of the form (20). The effective potential is here given 
explicitly by 

where from (9). (1 1) 

(2-0 
We now want to show that this effective potential admits stable solutions away from the 
poles ( p  = 0, p = 1) so that the winding number, which together with the charge S2 
guarantees the non-collapsing nature in Minkowski space via the angular momentum term 
in (17). is well defined. Since @ = 0 is to be identified with @ = 4rr the potential is defined 
on a cylinder with boundaries given by p = 0 and p = 1. The potential is furthermore 
periodic around the cylinder with a period of z. The critical points inside the surface of 
the cylinder are given by 

0)  p2 = 5 cos$ = o vefi = ( 4 2  + a2)/2 

(ii) p’ = f sin * = o ve8 = (4n2i2 + ~ 2 ’ / ~ . ~ ) / 2  

g* = p2 + 4p2(1 - p 2 )[sin . 2  @ + 1’ cos’ Jr - fi’1. 
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F b r e  1. The effective porential for v z  € ] f i2 ,  A2[. We 
show lhe potential for E [O. 2x1. The potential is 
periodic with a pericd n and $t = 0 has to be identified 
with 0 = 4n. The parameter values an f i x  = 5,  
y2 and lhe minima are two closed c w e s  
winding amund the cylinder. 

Figure 2. The effective potential for v2 €]A2. I[. We 
show the potential for $ E [O, &I. The potential is 
periodic with a period n and = 0 has U) be identified 
with 0 = 4n. The p m e t e r  values are fi2 = 5. 
A’ = 3, v2 = 2 and the minima are four closed curves 
at the surface of the cylinder. 

2, ,Iz = 

whereas at the boundaries (p  = 0, p = 1) we have V e ~  = (4n2p2 + Q2/p2)/2.  It follows 
that if there are solutions in the third case then this critical ‘curve’ represents the absolute 
minimum, since it always has the lowest potential. 

Now if we can fine-tune the various constants of motion such that the boundaries 
represent unstable configurations then we m always construct stable solutions where the 
smng is kept away from the poles. We therefore consider expansions of the potentid near 
the boundaries 

If this inequality is fulfilled we can now construct stable configurations with well-defined 
winding numbers, just by taking the ‘energy’ c: sufficiently low. Let us finally analyse 
the structure of minima in a little more detail. Suppose for instance that the squashing 
parameters h2 and p2 are kept fixed (p2 z hz > 1). Then decrease U* continuously 
downwards from p z  to zero, corresponding to (say) decreasing the SU(Z)-charge Q. For 
v Z  4 p 2 ,  A’[ the minima are represented by two continuous curves winding around the 
cylinder (figure 1). At v2 = A* the two curves break into four closed curves on the cylinder 
surrounding the four unstable points (p2 = i, cos $ = 0). For vz 4 h 2 ,  11 these four curves 
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Figure 3. TIE effective potentid for u2 < 1. We show 
the potential for !b E [O, al. The potential is periodic 
witha periodn and Q = 0 has to be identified with 
$ = 4x.  he parameter values are ~2 = 5. A= = 3, 
U’ = 213 and ihe minima are four discrete points. 

shrink for lower and lower U* (figure 2), and finally for Y* 6 1 the minima are just the four 
discrete stable points (p2 = 4, cos $ = 0)  (figure 3). 

are not directly measurable 
as physical quantities in this approach, since they are parameters in the intemal manifold. 
The physical aspects are related to equation (17) determining the dynamics in Minkowski 
space, so for an actual SU(2)  string one might think of measuring for instance the average 
radius etc. What we have shown in this section. however, is that, if such a stable circular 
SU(2)-charged string is found, it may perhaps be described by a mathematical model of 
the Kaluza-Klein type with a suitably squashed 3-sphere as intemal manifold. 

5. Conclusion 

The main result of this paper is the existence of stable circular smngs with pure SU(2) 
charges. There is, however, an important difference with respect to the systems studied 
previously [8-101. In the case of the S O ( N )  and SU(N)/Z,V strings the motion in the 
intemal space is stabilized by an infinite repulsive force which protects the string from 
collapsing to a point. In the SU(2) case the analogous repulsive force is finite. This fact 
does not exclude stable solutions but these solutions are evidently more ‘fragile’ than the 
others. The structure of the stability regions (the potential minima) which is determined by 
the SU(2)  charge and winding number as well as by the ‘squashing parameters’ is, as we 
saw in the previous section, quite involved. The connection between its degeneracy and the 
S U ( 2 )  representations is unclear and deserves further investigation. 

It should be stressed that the squashing parameters h and 
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